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ABSTRACT:
Model Predictive Control (MPC) is a useful tool when
controlling processes that handle a large number of
input and output variables. This study presents a
comparison of different MPC strategies when they are
subjected to control process variables directly. The
strategies studied are IMC, GPC, MPC-D, MPC-DR, and
DMC. Evaluation of the performance of the controlled
loop was performed with the filtering and correlation
analysis algorithm (FCOR). The methodology
proposed is validated in a Continuous Stirred-Tank
Reactor (CSTR) case study. Discrete predictive control
demonstrated the best results in this study.
Keywords: MPC design, Minimum variance control,
FCOR, CSTR

RESUMEN:
El Control predictivo de modelos (MPC) es una
herramienta útil para controlar procesos que manejan
un gran número de variables de entrada y salida. Este
estudio presenta una comparación de diferentes
estrategias de MPC cuando son usadas para controlar
directamente variables de proceso. Las estrategias
estudiadas son IMC, GPC, MPC-D, MPC-DR y DMC. La
evaluación del desempeño del lazo de control se
realizó con el algoritmo de análisis de filtrado y
correlación (FCOR). La metodología propuesta se
valida en un caso de estudio tipo CSTR. El control
predictivo discreto demostró los mejores resultados
en este estudio.
Palabras clave: Diseño MPC, Control de Mínima
Varianza, FCOR, CSTR

1. Introduction
Along history there have been countless industrial incidents that have resulted in several
loss of human lives, as well as billions of economic losses associated with these events.
Bhopal disaster is the world’s worst industrial disaster and took place in a pesticide plant in
Bhopal. That disaster occurred in 1984, and at least 3.000 people died in the first 24 hours
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and later 15.000 more because of the aftermath of the event (Zio & Aven, 2013). This and
many other incidents (Brice, 2008; Zio & Aven, 2013) have been caused for an identified (or
not) failure in the process, which caused a sequence of 'inter-dependent' errors and ended in
an unfortunate event.
These failures might have been prevented if one could keep constant monitoring of the
control variables associated with the critical process in industrial plants. As a matter of fact,
on average, a control engineer is responsible for about 450 control loops; however, the
number of loops ranges between 30 and 2.000 (Bauer, Horch, Xie, Jelali, & Thornhill, 2016).
Moreover, at the same time, this control engineer has to take care of administrative tasks
and non-related to process control (Bauer et al., 2016).
A control engineer’s primary purpose when designing and implementing a control loop must
be to guarantee and Table operation and an efficient production (Lindström, Kyösti, &
Delsing, 2018; Sanjuan, Kandel, & Smith, 2006). With the intention of contributing to the
control area, this work has been divided in two parts, first, the design and implementation of
Model Predictive Controllers (MPC) are considered and second, two index performances are
proposed in order to compare the MPC controllers mentioned previously. These indexes are
the Filtering and Correlation method (FCOR) and the Integral of Absolute Error IAE (IAE), for
a continuous production process, which is a reactor with heating through a coil with steam,
where two reactions take action. A more detailed description of the process can be found in
(Sanjuan et al., 2006).
The strategies implemented in this work are based on IMC (Duarte et al., 2017; Garcia &
Morari, 1982), GPC (Clarke, Mohtadi, & Tuffs, 1987) and MPC Discrete (Wang, 2009)
methods. In the implementation of these strategies the following considerations were taken:

Output variables: outlet stream concentration, product temperature, and the outlet flow stream,,
 y , respectively.
Inlet variables: feed flow, water flow, and steam flow,,, and , respectively.
Systems implemented must be MIMO 2x2.
There are often reports about sudden variations in the reactor’s inlet water pressure.

Results have shown that the best performance was achieved using control systems based on
discrete time (MPC-D and MPC-DR). The worst performance was presented by control
systems based on GPC and DMC. In the present work two index performances are proposed
as metrics of the behavior or accomplishment of the objectives of a control loop in an
industrial process, taken as a case study a CSTR which is a typical process that can be found
in industrial practice (dos SANTOS & others, 2016; Rivera, Alzate, & Arias, 2015).

1.1. Process Model

Figure 1
Continuous Stirred-Tank Reactor (CSTR),

taken from (Sanjuan et al., 2006)



1.2. Instrumentation



The characteristics of the different transmitters necessary to carry out the process control
were determined from the specification sheets of instruments available in the market, such
as:
The level and flow transmitters have quite low response times therefore, they were only
modeled as pure gains.
For the temperature sensor, a range of 200°F was selected, with a time constant of 0.5s.
A maximum concentration for B of 2  was defined, then taking as span 2 . For this type of
samples, the retention times in the columns are approximately 4 min, which leads to a time
constant of 0.8 min.
Typically the steam is worked as compressible fluid, although for the conditions established
in the problem where the pressure and the saturation temperature are close to atmospheric
(17.02 psi and 219.45 F) a small pressure drop across the valve is considered and for these
conditions the sizing  of the valve can be approximated to a liquid service fluid valve. Twice
as much of the flow in steady state was taken for the maximum steam flow and a maximum
pressure drop of 4 psi and a minimum of 2 psi (which can approximate the behavior of a
valve for fluids service), then  was calculated. The a value was obtained to determine which
type of valve had to be chosen, the value obtained was quite low (a value of 2.4); therefore,
it was chosen proportionally, a gain of 0.589 was obtained. Similarly, the valves of the feed
and water streams were dimensioned.
The characteristics of the transmitters and final control elements used in the simulations are
summarized below.

Table 1 
Characteristics of the Transmitters and Final Control elements

Process
Stream

Instrument Gain Time
Constant

Feed Stream Flow Transmitter 2.0544

Water Stream Flow Transmitter 2.7650

Outlet Stream Concentration Transmitter 50 0.8

CSTR Level Level Transmitter 4

Outlet Stream Temperature Transmitter 0.5 0.0017

Steam Stream Steam Valve 0.5893 0.1667

Water Stream Water Valve 2.7056 0.1667

Feed Stream Feed Valve 3.6414 0.1667

1.3. Process Analysis





2. Control Strategies

2.1. Internal Model Control



Figure 4
IMC Block Diagram Strategy

Figure 5
IMC Closed-Loop System Response



2.2. Generalized Predictive Control Based on Transfer
Functions, GPC-FT

Figure 6
GPC-FT Closed-Loop System Response



2.3. Model Predictive Control Based on Discrete Time, MPC-D

Figure 7
MPC-D Strategy Block Diagram

Figure 8
MPC-D System Response in Closed-Loop

2.4. Model Predictive Control Based on Discrete Time with
Restrictions, MPC-DR



Figure 9
MPC-DR Strategy Block Diagram

2.5. Dynamic Matrix Control
This strategy of predictive control, unlike the other strategies, does not use an explicit model
within its structure to determine the future behavior of the controlled variable (s). In this
sense, this approach is advantageous, since to obtain the prediction it is only necessary to
have the response curve of the process and assume a linear behavior. In comparison with
the other strategies, assuming linearity is not a disadvantage because all the strategies used
to make this assumption. Then, from the response vector, the unit response vector  is
obtained. This vector is calculated by subtracting, at each of the values of the response, the
initial value of this. To then divide the result by the value of the  used to obtain the response
vector. Thus, the response matrix  is represented in (2.13).



3. Control Performance Index
In an industrial process, there are typically hundreds to thousands of controllers, which are
usually of the Proportional-Integral-Derivative (PID) type, but there may also be non-linear,
adaptive, or multivariable-predictive controllers (Harris, Seppala, & Desborough, 1999).
However, most controllers work well during the first stage of operation (typically the first six
months) (Jelali, 2012), after which their performance begins to deteriorate gradually until
they are finally destined to be manual. See Figure 12.

Figure 12
Typical decay of industrial process control performance 

due to different factors, taken from (Jelali, 2012)



The methods for evaluating control loop performance are divided into: 1. Deterministic
(based on settling time, based on area, performance indices), 2. Advanced (based on a
model: Gaussian linear quadratic LQG, minimum generalized variance GMV, predictive
models), and 3. Stochastic (based on data); the latter can be classified as 3.1 specified by
the user (desired behavior of the closed loop, reference model, historical), 3.2 First-Pass
(descriptive statistics, auto-correlation, spectral analysis) 3.3 Minimum variance (MV) (based
on the interacting matrix, not based on the interacting matrix). Several interests in the
performance of the plant or the process has been shown in recent studies (CANO, BOTERO,
& RIVERA, 2017; JORDÃO, Neto, & others, 2016; Mauricio Johnny & RODRIGUEZ, 2015) ,
where from a different perspective, they look forward the improvement of the overall
system. The methods for evaluating the performance of the control loop are based on
determining the variance of the process and comparing it with some "ideal" value or desired
value. In the present study, the Filtering and Correlation algorithm (FCOR) (Huang, 1998)
have been used, and it defines the key performance parameter as:



Record the information of the variables of interest of the system in the closed-loop appropriately,
without changes of setpoint. The mean of the variable must be subtracted.
Obtain a system model (by analyzing a series of data)
Estimate the dominant time delay of the process.
Calculate the coefficients of the infinite response of the model in closed loop.
Estimate the variance of the residuals.
Calculate the minimum variance using equation (3.2).
Estimate the current variance.
Calculate the performance index using equation (3.1).

 

4. Results
As mentioned before, the operational conditions in consideration in the simulations are: 20%
increment in  setpoint and also an increment of 10% in , both at t=2 and t=100 minutes,
respectively. A pressure drop reduction of 20 % in the water valve at t=50 minutes, a 30%
closing in the reactor’s discharge valve between minutes 150 and 160; a 10% drop in
concentration of reactive A between t=270 minutes and t=280 and a Gaussian noise of zero
mean at t=350 minutes.
According to results shown in Table 2, one can observe that control strategy MPC-D is the
one that permits obtain the best performance of the process concerning minimum variance
when it is subjected to several disturbances as setpoint changes, variations in inlet reactive
concentration, and variations in the opening of the discharge valve. The previous situation is
most likely because of the Kalman-filter structure used in the control law, where there is a
predictor module, and a corrector module, therefore this control strategy output will be the
required for counteracting changes in the least aggressive and faster possible fashion. On
the other hand, it can be evidenced that control signal changes can get to be very



sudden/abrupt, situations that could get to be counterproductive regarding the correct
functioning of control valves.  

Table 2
Summary of the performance obtained with the different strategies

As for variations with respect to changes in the closure of the discharge valve it was
concluded that control strategies IMC, MPC-D and MPC-DR presents the best performance,
when taking into account that control variables are at their desired value or setpoint, as well
as for ‘stability’ or ‘behavior’ of the controller output. Regarding the behavior of the control
strategies when comparing the total IAE value, it was concluded that the best performance
was obtained using the MPC-DR control strategy.
On the contrary, strategies like GPC-TF or DMC presents a lower performance. Therefore,
DMC strategy presents the most significant variations against setpoint changes, and the
GPC-TF control strategy presents the most considerable variations against sudden changes
in the inlet water pressure. Regarding inlet reactive concentration changes, both strategies
present a similar behavior between them.

5. Conclusions
Considering that the effects due to changes in setpoints over other output variables (for
example, the effect on  due to a change in ) are indicative of the level of interaction between
inputs and outputs, it can be concluded that the internal model control (IMC) is the one that
best dissociates interactions achieved; however it presents a very low-performance index.
Control strategies based on discrete MPC presents the best behavior against inlet
disturbances, this results evident because their response was the best against changes in
the water supply flow pressure, as well as a performance index close to 1.
The worst performance regarding the system and operational conditions analyzed was given
for the GPC-TF and MPC-DR control strategies.
The best performance under the operational conditions mentioned above and also taking
into account both performance indexes  was presented by the MPC-DR scheme, mainly
because of a faster speed response. It is important to mention that the performance index
helps us determine how good or how bad the control loop have performance under some
disturbances in a simpler form (compare data in Table 2) vs. traditional manner (compare
Figures 5,6,8,10, and 11). These results very usefully when monitoring control loops in an
industrial environment, where it can be found between one hundred or more than a
thousand control loops. However, as in this research is evidenced, it is very beneficial having
more than one performance index (for example, IAE besides of ) so one can be able to have
a better understanding of the behavior of the control loops, and then from this information
being able to take better decisions for different tasks: re-tuning or re-configuration of the
control strategies.
It should be noted that, although the behavior accomplishes with IMC is similar to MPC-DR,
and the additional advantage of the last one is that since it is a strategy based on discrete
time, its implementation in a device like a PLC is more straightforward. It is important to
mention that IMC strategy does not allow an effective integration with the use of



restrictions, both in manipulated and controlled variables and then depending on the process
to control this may not be the most viable option, although it can draw attention to the
industrial level due to its ease of implementation.
As for the other predictive control strategies studied, it is important mentioning that an
imperative step for having good performance is when setting the tuning of the controller, so
according to the present study, it might be possible to be necessary to carry out an
optimization process that allows obtaining the best possible tuning in each case.
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